Na een succesvolle afstudeerstage voor haar Masteropleiding Data Driven Business, startte Paulien Luhulima op 15 juli als Business Intelligence Specialist bij JoinSeven. In dit blog lees je over wie Paulien is, waarom ze ervoor koos om bij JoinSeven te werken en wat haar visie is op haar vakgebied.
Allereerst welkom, Paulien!
Gisteren was je eerste ‘echte’ werkdag bij ons als Business Intelligence Specialist. Hoe is die eerste werkdag bevallen?
Gisteren was eigenlijk best een spannende dag! Ondanks dat JoinSeven door mijn stageperiode niet nieuw voor mij is, voelde het toch echt als een nieuwe start. Ik kijk er erg naar uit om in dit team verder te werken aan waar ik tijdens mijn stage al aan begonnen ben. De drive om te starten was dus zeker aanwezig. En super leuk dat jullie met een hele stel collega’s naar kantoor waren gekomen om me (opnieuw) welkom te heten! Ik wist eigenlijk niet zeker of er collega’s op kantoor zouden zijn, maar voor de zekerheid had ik al wel (zelfgebakken) koekjes meegenomen! 😉
Wie ben je?
Straks gaan we het over jouw rol bij JoinSeven hebben. Maar voordat we daarmee beginnen: Vertel kort eens iets over jezelf?
Nou om te beginnen heet ik Paulien, ben ik 24 jaar en woon ik in Hilversum met mijn vriend. Ik zou mezelf wel omschrijven als een doener. Ik probeer graag dingen uit. En als ik iets heel leuk vind, dan bijt ik me erin vast. Dan wil ik er beter in worden! Ik heb een studie-achtergrond in Finance. Toen ik daarin mijn bachelor haalde, merkte ik dat ik nog iets miste. Na een half jaar werken, merkte ik dat mijn collega’s veel met data deden. Dat inspireerde mij om daar ook mee aan de slag te gaan. Om die reden ben ik me gaan verdiepen in Masteropleidingen die dat aanboden en kwam ik bij de Masteropleiding Data Driven Business terecht!
Een paar dingen waar ik in mijn privé veel energie uit haal:
- Ik doe graag aan yin yoga. Dat is een rustige vorm van yoga waarbij je ontspannen voor langere tijd in een houding blijft. Dat werkt heel rustgevend!
- Ik bak graag (en neem regelmatig wat mee van huis naar kantoor)
- Ik ben als DJ PAULA wel eens te zien achter de draaitafels op huisfeesten. Ik draai dan voornamelijk drum & bass, bass house en af en toe tech house.
Waar moeten mensen jou voor hebben?
Je gaat aan de slag als Business Intelligence Specialist. Kan je kort uitleggen wat je rol inhoudt en wat je gaat doen?
Mijn kracht zit volgens mij in het vertalen van (complexe) data naar actiegerichte inzichten. Ik ben goed in luisteren en doorvragen. Daardoor lukt het me goed om tot de kern van iemand zijn/haar verhaal te komen en daar een passende (data-)oplossing voor te vinden.
In mijn studie noemden ze de rol “Analytics Translator” en ik kan me wel goed vinden in die definitie. Ik help dan data-inzichten toegankelijk en begrijpelijk te maken voor verschillende belanghebbenden, zowel technische als niet-technische. Naast die de rol als “vertaler” vind ik het ontzettend leuk om de techniek in te duiken en te gaan puzzelen totdat ik de oplossing (bijvoorbeeld een dashboard in Power BI, datamodel in SQL of een algoritme) ook heb gemaakt.
Verder heb ik me hier tijdens mijn stage ontwikkeld als een SaaS-monitoringsexpert. Die rol wil ik binnen JoinSeven blijven vervullen, ook voor de nieuwe (AI-gedreven) SaaS-oplossingen die we de komende tijd gaan ontwikkelen, zoals Elyn.
Waarom JoinSeven?
Interessante rol zeg. En wat maakte dat je voor JoinSeven koos?
Het korte antwoord is dat ik het tijdens mijn stage gewoon ontzettend naar mijn zin heb gehad. En daarmee voelt het ook heel goed om hier te blijven. Ik vind JoinSeven een leuk en hecht team en ik waardeer ons doel om écht impact te maken met ons werk. Werken in een relatief kleiner bedrijf spreekt mij in bredere zin ook wel aan, omdat ik houd van korte lijnen en directe communicatie. Ook heb ik het gevoel dat ik hier enorm veel kan leren en de ruimte krijg om mij verder te ontwikkelen.
Wat is je toekomstvisie op business intelligence?
De ontwikkelingen in technologie gaan momenteel razendsnel. Wat is volgens jou de grootste uitdagingen in het adopteren en gebruiken van Business Intelligence oplossingen?
Ik geloof dat er steeds meer integratie zal plaatsvinden van geavanceerde technologieën, zoals AI en Machine Learning. Ik denk dat bijvoorbeeld Machine Learning een steeds grotere rol zal spelen bij het analyseren van datasets en ontdekken van patronen die voorheen onzichtbaar waren. Dit zal organisaties helpen om niet alleen terug te kijken, maar ook om toekomstgerichte beslissingen te nemen op basis van data-gestuurde voorspellingen en aanbevelingen.
Daarnaast verwacht ik dat BI-oplossingen meer toegankelijk en gebruiksvriendelijk zullen worden voor zakelijke gebruikers met beperkte technische kennis. Hierdoor zullen meer mensen binnen organisaties in staat zijn om data-inzichten te benutten in hun dagelijkse werkzaamheden.
En wat zijn volgens jou dan de grootste uitdagingen?
Wat ik tot nu toe veel tegenkom is dat er veel uitdagingen liggen die te maken hebben met de datakwaliteit en de integratie ervan. Data dient nauwkeurig, compleet en consistent te zijn om het te kunnen gebruiken voor besluitvorming. Ook denk ik dat het ethisch omgaan met data een belangrijk thema is.
Al met al, ben ik ontzettend enthousiast om als Business Intelligence Specialist aan de slag te gaan. De hechte en doelgerichte werkomgeving geeft me het vertrouwen dat ik hier veel kan leren en mezelf verder kan ontwikkelen. Nogmaals bedankt aan alle collega’s voor het warme welkom!
Introductie
Blogreeks Business Intelligence
In dit blog geven we een introductie in Business Intelligence (BI). De rol van data in het bedrijfsleven en binnen de publieke sector is niet te onderschatten. BI heeft zich ontwikkeld tot een essentieel onderdeel van de bedrijfsvoering van organisaties dat helpt om data om te zetten in waardevolle inzichten, waarmee ze betere beslissingen kunnen nemen.
Er is een groeiende behoefte aan datagedreven besluitvorming in verschillende sectoren. Van E-commerce tot professioneel voetbalclubs en overheidsorganisaties, organisaties zetten steeds vaker data in om hun strategisch, tactisch en operationeel besluitvorming te verbeteren en nieuwe kansen te ontdekken. BI-technologie dient precies dat doel: Het helpt om data te verzamelen, te analyseren en te presenteren op een manier die gemakkelijk te begrijpen en te interpreteren is. Hierdoor kunnen bedrijven efficiënter werken, klantgedrag beter begrijpen, en strategische beslissingen nemen die hen een concurrentievoordeel geven.
Business Intelligence succesvol implementeren is een uitdaging
Ondanks dat het werken met data en BI-systemen allang geen trend meer te noemen is en er vele goede voorbeelden en succesverhalen zijn, zijn er ook veel bedrijven die nog worstelen met de implementatie van BI en het volledig benutten van de mogelijkheden ervan. Het succesvol implementeren van BI-oplossingen brengt de nodige uitdagingen met zich mee. Denk bijvoorbeeld aan het volgende:
- Hoe zorg ik dat mijn organisatie (met behulp van BI) datagedreven gaat werken?
- Welke BI-oplossingen passen het beste bij mijn organisatie en (data)strategie?
- Waar wil ik als organisatie op sturen en welke KPI’s stellen we vast?
- Hoe breng ik data uit meerdere systemen samen in één analytische omgeving?
- Hoe ontwikkel ik dashboards en andere BI-toepassingen die mensen in de organisatie kunnen (en willen) gebruiken?
- Hoe zorg ik voor de juiste betrouwbaarheid en kwaliteit van de data?
- Wat is de impact van nieuwe technologie, zoals Kunstmatige Intelligentie, op Business Intelligence?
Deze vragen zijn terecht en de antwoorden zijn niet altijd eenvoudig te vinden.
Blogreeks
En daarom lanceren we deze blogserie over Business Intelligence. Door onze kennis over BI te delen, willen we organisaties helpen om BI-implementaties tot een groter succes te maken. De komende 18 weken posten we iedere twee weken één onderwerp dat cruciaal is voor een effectieve BI-strategie. We gaan in op onderwerpen zoals het kiezen van de juiste BI-tools, het definiëren van KPI’s, datawarehouses, data governance, en het creëren van dashboards en andere BI-toepassingen.
Wat is Business Intelligence?
In deze eerste blog behandelen we de vraag “Wat is Business Intelligence?”. We geven een introductie in BI: wat het is, hoe het werkt, en welke voordelen en uitdagingen er liggen bij de implementatie ervan in jouw organisatie. Ook geven we een voorproefje van de volgende blogs in deze serie.
Definitie
Wat is Business Intelligence?
Business Intelligence, vaak afgekort als BI, is een verzameling van technologieën, tools en processen waarmee organisaties data verzamelen, analyseren en omzetten in bruikbare informatie. Het doel van BI is om beter geïnformeerde zakelijke beslissingen te nemen op basis van data in plaats van (enkel op) intuïtie.
BI-systemen bieden een gestructureerde manier om data uit diverse bronnen te verzamelen, te integreren en te analyseren. Deze systemen gebruiken geavanceerde analytische methoden en visualisatietools om complexe data om te zetten in begrijpelijke en bruikbare inzichten. Door middel van dashboards en interactieve visualisaties kunnen gebruikers snel en eenvoudig de relevante informatie verkrijgen die nodig is voor hun besluitvorming.
Menselijk oordeel blijft hierbij van cruciaal belang; data versterkt dit oordeel door een solide basis te bieden voor weloverwogen beslissingen. Data helpt objectieve feiten en patronen te onthullen, terwijl mensen deze informatie in de juiste context kunnen plaatsen, betekenis kunnen geven en uiteindelijk de beslissingen nemen.
Voordelen van Business Intelligence
Het implementeren van Business Intelligence biedt tal van voordelen voor bedrijven. Van verbeterde besluitvorming tot strategische planning, BI transformeert de manier waarop bedrijven opereren. Hier zijn enkele van de belangrijkste voordelen:
- Data gedreven keuzes maken: BI zorgt voor real-time toegang tot belangrijke bedrijfsdata, waardoor medewerkers snel en met vertrouwen beslissingen kunnen nemen. Dit stelt bedrijven in staat om trends en ontwikkelingen, zowel binnen de organisatie als in de markt, snel te identificeren en erop te reageren.
- Operationele efficiëntie: BI draagt bij aan het efficiënter inrichten van dagelijkse werkzaamheden. Door bottlenecks en optimalisatiemogelijkheden in processen inzichtelijk te maken, kunnen bedrijfsresources sneller en nauwkeuriger worden toegewezen. Hierdoor kan de operationele efficiëntie worden verhoogd.
- Concurrentievoordeel: Met BI kunnen bedrijven continu monitoren wat er in de markt speelt en sneller inspelen op veranderingen dan hun concurrenten. Het vroegtijdig identificeren van trends en het volgen van concurrentieontwikkelingen stelt bedrijven in staat altijd een stap voor te blijven.
- Verbeterde klant inzichten: BI stelt bedrijven in staat om diepgaande inzichten te verkrijgen in klantgedrag en klanttevredenheid. Dit helpt bij het ontwikkelen van nieuwe producten, het verminderen van het verloop en het optimaliseren van marketingstrategieën.
- Strategische planning: BI ondersteunt langdurige strategische planning door inzicht te bieden in de sterke en zwakke punten van de organisatie. Het helpt kansen en bedreigingen in de markt te identificeren en draagt bij aan het opstellen van realistische doelen en plannen voor langdurige groei.
Onderdelen binnen Business Intelligence
Om BI effectief en waardevol in te zetten, moeten er vier stappen worden doorlopen: van het verzamelen en voorbereiden van de data tot het helder presenteren van de bevindingen aan de juiste doelgroepen.
Data Verzamelen
BI-tools verzamelen data uit verschillende bronnen. Denk hierbij aan databases, spreadsheets en (cloud)applicaties. Dit proces zorgt ervoor dat alle relevante data op één centrale plek beschikbaar is voor analyse.
Data Processing & Analyse
Deze data wordt vervolgens opgeslagen in datawarehouses, wat zorgt voor een gestructureerde opslag van data. Met programmeertalen als SQL of Python ontdek je trends en waardevolle inzichten uit je data.
Data Visualisatie
Het visualiseren van data met behulp van grafieken, dashboards en rapporten maakt complexe data begrijpelijker en makkelijker te interpreteren. Goede datavisualisatie helpt om patronen en trends snel te herkennen en te communiceren.
Reporting
Het delen van inzichten met stakeholders is essentieel voor een succesvolle implementatie van BI. Door regelmatig te rapporteren kunnen alle betrokkenen op de hoogte blijven van de laatste ontwikkelingen en resultaten.
use-cases
Voorbeelden uit de praktijk
Business Intelligence heeft zijn waarde al bewezen in diverse sectoren en toepassingen. Bij JoinSeven hebben we met trots meerdere succesvolle BI-projecten uitgevoerd die onze expertise en innovatievermogen benadrukken. Deze projecten variëren van het verbeteren van operationele efficiëntie tot het ondersteunen van strategische beslissingen met diepgaande data-analyse. Door middel van onze praktijkvoorbeelden laten we zien hoe BI organisaties helpt om te transformeren en te groeien.
- Dataplatform voor een Eredivisieclub: Implementatie van een dataplatform voor datagedreven sportprestaties en scouting.
- Inzicht in de gehele inkoop- en betaalketen bij OCW: We helpen het Ministerie met BI aan meer inzicht over hun gehele inkoop- en betaalketen.
- Datagedreven werken en inkopen bij Rijksinkoopsamenwerking: Transformatie naar een datagedreven organisatie voor efficiëntere inkoopprocessen.
- Ontwikkeling naar een datagedreven organisatie bij Morentz: Ondersteuning van sales, operations en contentmanagement met data en automatisering.
- Datagedreven Innovatie bij Novum Innovatielab: Ontwikkeling en implementatie van oplossingen voor datagedreven innovatie bij de Sociale Verzekeringsbank.
Conclusie
In dit blog behandelden we de basis van Business Intelligence en toonden we hoe het organisaties helpt bij het nemen van beter geïnformeerde beslissingen. De kernpunten uit het blog zijn:
- Wat Business Intelligence is: BI ondersteunt organisaties om meer op basis van feiten te sturen, in plaats van enkel op intuïtie.
- Het belang van data: Het beschikbaar stellen van inzichten aan de organisatie verbetert strategische en tactische besluitvormingsprocessen en de operationele bedrijfsvoering.
- Kernonderdelen van BI: Data verzamelen, opslaan, structureren, analyseren, visualiseren en rapporteren.
- Voordelen van BI: BI leidt onder andere tot een verhoogde efficiëntie, concurrentievoordeel, verbeterde klantinzichten en strategische planning.
- Praktijkvoorbeelden: We werken in diverse branches en organisaties aan BI-oplossingen, van eCommerce en voetbalclubs tot overheidsorganisaties en beleidsprocessen.
We hopen dat je met de inzichten uit dit blog de potentie van BI voor jouw organisatie beter kan begrijpen en benutten. Blijf ons volgen voor meer diepgaande blogs over Business Intelligence, met het volgende blog over het onderwerp Datagedreven Werken.
Vooruitblik
In de komende blogs duiken we diep in op elk belangrijk aspect voor een succesvolle Business Intelligence implementatie in jouw organisatie. We voorzien je van de benodigde kennis en tools om een succesvol BI-project op te zetten.
Blog 1
Introductie in Business Intelligence
Ontdek in het eerste blog hoe Business Intelligence jouw bedrijf kan transformeren door datagedreven beslissingen te ondersteunen en waardevolle inzichten te onthullen.
Blog 2
Datagedreven werken
Leer in het tweede blog hoe datagedreven werken jouw bedrijf kan transformeren en de basis kan leggen voor effectieve, op data gebaseerde besluitvorming.
Blog 3
Het landschap van BI-systemen
In het derde blog gaan we in op de verschillende Business Intelligence tools en systemen. Leer hoe je de juiste keuzes maakt voor jouw datagedreven strategie.
Blog 4
Meten is weten: De kracht van Key Performance Indicatoren
In het vierde blog gaan we in op hoe Key Performance Indicatoren (KPI’s) jouw BI-strategie versterken en zorgen voor meetbaar succes in jouw organisatie.
Blog 5
Het implementeren van een datawarehouse
Een goed geïmplementeerd datawarehouse is essentieel voor effectieve Business Intelligence. In het vijfde blog bespreken we de stappen voor het implementeren van een datawarehouse, de voordelen, en hoe het jouw datagedreven strategie kan ondersteunen.
Blog 6
Van data naar inzicht: Het ontwikkelen van dashboards en andere BI-toepassingen
Ontdek in het zesde blog in de blogreeks hoe je effectieve dashboards en andere BI-toepassingen kunt creëren om waardevolle inzichten te verkrijgen en datagedreven beslissingen te nemen.
Blog 7
Data Governance
In het zevende blog gaan we in op hoe data governance cruciaal is voor het succes van jouw BI-strategie.
Blog 8
Nieuwe technologieën in BI
Ontdek de nieuwste technologieën die de toekomst van Business Intelligence vormgeven. Leer hoe AI, machine learning en andere innovaties jouw BI-strategie kunnen verbeteren.
Blog 9
Samenvatting van de Business Intelligence blogreeks
Herbeleef de hoogtepunten van onze Business Intelligence blogreeks en ontdek hoe je jouw BI-strategie kunt optimaliseren voor maximale impact.
Groot nieuws!
Zoals jullie de afgelopen maanden hebben kunnen zien, is JoinSeven flink aan het groeien. In 2023 groeiden we van een team van 4 naar een team van 7, en inmiddels werken we met zijn 9en aan datagedreven oplossingen met impact!
Met groei komen nieuwe uitdagingen
Zoals het spreekwoord zegt: ‘Met groei komen nieuwe uitdagingen’. Voor ons betekende dit dat we niet meer in ons kantoor bij Dotslash pastten en daarom opzoek moesten naar een nieuwe locatie. Na veel bezichtigingen op allerlei locaties vonden we onze nieuwe plek: Villa Mooi Zeist. Daarom zijn we verhuisd naar deze mooie, inspirerende plek.
Nu we zijn verhuisd, hebben we de ruimte om verder te kunnen groeien als organisatie. Ook geeft het ons de kans om een inspirerende werkomgeving te bieden aan onze collega’s en zo gezamenlijk verder te groeien naar nieuwe successen!
Introductie
Blogserie Generatieve AI
In dit blog geven we een introductie in Generatieve AI. Het is vrijwel niemand ontgaan: de snelle ontwikkelingen rondom Generatieve AI (GenAI). Generatieve AI is enorm in populariteit gestegen, met name dankzij doorbraken zoals ChatGPT en DALL-E van OpenAI. Naar schatting werken momenteel al meer dan anderhalf miljoen Nederlanders met de technologie (1), bijvoorbeeld om mails op te stellen, afbeeldingen te genereren of zelf te experimenteren met nieuwe toepassingen.
De technologie biedt kansen om werk beter en efficiënter uit te voeren. Volgens recent onderzoek door PWC is ruim 44% van de Nederlandse banen in hoge mate “blootgesteld” aan GenAI en kan de technologie een oplossing zijn voor de aanhoudende arbeidsmarktkrapte in Nederland (2). In het onderwijs is momenteel ook een enorme verschuiving gaande, nu studenten zichzelf massaal laten ondersteunen door ChatGPT bij het maken van opdrachten en schrijven van essays en scripties. Universiteiten gaan op zoek naar manieren om de technologie op een constructieve manier onderdeel te laten maken van het onderwijs (3).
Wij merken ook een groeiende interesse in GenAI. Van de boardroom tot de koffiecorner, in zo’n beetje ieder bedrijf wordt momenteel wel gesproken over de toepassingen. En iedere dag is wel érgens een kennisbijeenkomst of een webinar over het onderwerp.
Generatieve AI is nog niet voor iedereen een succesverhaal
Zoals met al het nieuws, lees je vooral de enorme succesverhalen (of juist risico’s en doemverhalen). In de praktijk zijn veel organisaties in Nederland nog weinig veranderd en blijft een structurele inbedding van de waarde van GenAI regelmatig nog achter. De vraag die mensen en organisaties ons vaak stellen is:
- “Wat is Generatieve AI?”
- “Wat kan AI voor mijn organisatie betekenen?”
- “Hoe start ik een succesvol AI-project?”
- “Wat is ervoor nodig om AI te kunnen implementeren?”
- “En hoe doe ik dat op een verantwoorde manier?”
Allemaal zijn dit terechte vragen. En het antwoord hierop is niet altijd even gemakkelijk te vinden.
Blogserie
Daarom lanceren we deze blogserie over Generatieve AI. Door onze kennis te delen, willen we organisaties helpen de stap te zetten van “het praten en overwegen” naar het realiseren van succesvolle en verantwoorde AI. Tot het einde van dit jaar belichten we iedere week één onderwerp voor een succesvolle AI-implementatie. We gaan in op onderwerpen als het vinden van een geschikte use case, het realiseren van een gedegen technisch fundament, het selecteren, trainen en tunen van taalmodellen, het verantwoord inzetten van AI tot het valideren en implementeren van je AI-oplossing. We focussen hierin met name op AI-oplossingen gericht op tekstuele content.
In deze eerste blog behandelen we de vraag “Wat is Generatieve AI?”. En geven we een een introductie in Generatieve AI: We gaan in op wat het is, hoe het werkt en welke kansen en uitdagingen er liggen bij het implementeren ervan in je organisatie. We geven ook een voorproefje van de volgende blogs in deze serie.
Generatieve AI zet de wereld
op zijn kop
Laten we starten bij het concept Generatieve AI. Dit is meer dan een modieus buzzword. Het is een vorm van kunstmatige intelligentie waarbij algoritmen data genereren in plaats van alleen te analyseren. GenAI maakt het mogelijk om nieuwe content te creëren, variërend van tekst tot afbeeldingen, video’s, spraak en zelfs muziek. Het kan hiermee realistische en persoonlijke interacties tussen mens en machine bewerkstelligen.
Een aantal concrete voorbeelden waar Generatieve AI voor wordt ingezet:
- Het beantwoorden van eerstelijns klantvragen over de dienstverlening van organisaties.
- Het schrijven van promotie- en marketingmateriaal door marketeers en contentschrijvers.
- Het genereren van afbeeldingen op basis van tekstuele beschrijvingen (of andersom).
- Het schrijven, controleren en verbeteren van programmeercode of queries door ontwikkelaars.
Neem bijvoorbeeld een Generatieve AI in de context van een dienstverlener zoals wij. Op basis van data over veelgestelde vragen en reviews van klanten, kan een AI op een nieuwe vraag van een klant, gepersonaliseerde en relevante antwoorden genereren. Bij een nieuwe vraag, zoals over onze openingstijden of de wijze waarop een afspraak ingepland kan worden, interpreteert de AI eerst de opdracht/vraag, haalt de benodigde informatie op uit onze (interne en publieke) data en formuleert vervolgens een uniek en gepersonaliseerd antwoord aan de klant.
Dit is een vrij eenvoudig voorbeeld. Maar soortgelijke interacties kan je ook toepassen in andere, meer complexe bedrijfsmatige situaties. In de beleidsmatige context kan je denken aan een toepassing voor het beantwoorden van Kamervragen, voor het beantwoorden van Nota’s van Inlichtingen bij het uitvoeren van Europese aanbestedingen of voor het herkennen van commerciële kansen voor ondernemingen op basis van marktinformatie. Wil je meer weten over deze toepassingen, kijk dan vooral in ons portfolio van AI-projecten.
Het taalmodel
De motor achter Generatieve AI
Generatieve AI-modellen leren van grote hoeveelheden data. Ze analyseren deze data om patronen en relaties te herkennen. De motor hierachter is een taalmodel (ook wel “Large Language Model” of “LMM” genoemd. Beschouw een taalmodel als een algoritme dat de structuur en het gebruik van taal leert te begrijpen. Taalmodellen zijn gebaseerd op statistische analyses van teksten. Ze berekenen de waarschijnlijkheid van woordvolgordes in zinnen.
Moderne taalmodellen, zoals die gebaseerd op Transformer-architecturen (bijvoorbeeld Open AI’s GPT-3 en 4, Google Bard en LLaMa van Meta), gebruiken neurale netwerken met verschillende lagen om relaties tussen woorden en zinsdelen in een tekst te leren begrijpen. Teksten worden eerst opgedeeld in stukjes (“tokens”), die kunnen variëren van één karakter tot hele woorden. Deze tokens worden weer omgezet in numerieke vectoren (“embeddings”) die de betekenis en relaties tussen woorden vastleggen.
Als eerst wordt het model getraind op een algemene dataset en daarna kan het voor specifieke taken worden getuned op een specifieke dataset voor de betreffende use case, zoals het beantwoorden van vragen van klanten of het genereren van teksten, afbeeldingen of muziek in een bepaalde context of genre.
Hoeveel kennis heeft een AI?
Een veelgehoord misverstand
Een veelgehoord misverstand is dat mensen denken dat een kunstmatige intelligentie zoals ChatGPT over brede kennis beschikt en daardoor goede antwoorden op vragen kan formuleren. Dat ligt iets anders. In werkelijkheid voorspelt het taalmodel de waarschijnlijkheid van woordvolgordes op basis van de data waarop het is getraind. Het is daarbij goed om te beseffen dat de data waarop het model is getraind in het (nabije) verleden ligt.
“Ook voor AI geldt;
garbage in, garbage out. “
Succesfactoren
Door onze ervaring in het veld van AI en innovatieve dataprojecten, hebben we een duidelijk beeld opgedaan van wat er nodig is om Generatieve AI succesvol én verantwoord te implementeren. Een deel van deze aspecten zijn specifiek van belang voor projecten op het vlak van GenAI, maar een groot deel is ook breed toepasbaar op projecten met een groot technologisch en innovatief karakter.
Denk bij het implementeren van Generatieve AI in jouw organisatie aan het volgende:
- Je hebt een duidelijke use-case nodig. Hierbij is ons advies: Zoek een oplossing voor een probleem en niet andersom! Inventariseer eerst problemen die je wil oplossen, en creëer daarna een visie van hoe (Generatieve) AI dit probleem kan oplossen.
- Een succesvolle inzet van AI vraagt om een solide informatievoorziening. Ook voor AI geldt; “garbage in, garbage out”. Het gaat hier niet alleen om de taalmodellen die je gebruikt, maar juist ook de data en systemen die deze modellen voeden.
- Train en tune je AI-model voor je use-case. Voor de meeste use-cases is meer nodig dan een “off-the-shelf” oplossing. Het trainen en/of tunen van je taalmodel voor jouw use-case maakt een groot verschil.
- Houd rekening met met ethische en maatschappelijke overwegingen, zoals privacy en algoritme-bias. Technologie is op zich niet “goed” of “slecht”, maar een verkeerde implementatie kan onnodig risico’s met zich meebrengen. Wij staan voor een verantwoorde en mensgerichte inzet van AI.
- Kies voor een innovatiegerichte, mensgerichte en kortcyclische aanpak. Een Generatieve AI project is namelijk per definitie innovatief. Valideer aannames en onderzoek onbekende facetten van AI in jouw organisatie. Onze Data Discovery Sprint geeft hier op een concrete, gebruikersgerichte en snelle manier invulling aan.
- Begeleid mensen in je organisatie met het werken met AI. Generatieve AI zet bedrijfsprocessen op zijn kop en veel mensen vinden het spannend. Een succesvolle implementatie vraagt daarom om een gedegen implementatiestrategie met oog voor de mensen die ermee (gaan) werken, de technologie en werkprocessen. Alleen op deze manier zorg je ervoor dat een AI-project echt positieve impact heeft.
Conclusie
In dit blog gaven we een korte introductie op onze blogreeks over GenAI. We gingen in op de vraag: “Wat is Generatieve AI?”. We gaven een introductie in Generatieve AI, waar je het op kan toepassen en hoe het op hoofdlijnen werkt. We presenteerden tot slot vanuit onze visie de zes succesfactoren voor ieder AI-project. Deze factoren behandelen we allemaal in een apart blog in deze serie.
Een aantal hoofdpunten:
- GenAI zet de wereld op zijn kop en is meer dan een modieus “buzzword”.
- Het werkt op basis van een taalmodel dat op basis van Deep Learning woordvolgordes voorspelt.
- Taalmodellen bevatten niet alle “kennis” zelf, maar baseert deze op de data waarop het is getraind.
- Succesfactoren zoals een geschikte use-case, technologisch fundament en innovatieve werkwijzen zijn cruciaal voor een impactvolle AI-implementatie.
Direct alle inzichten?
Wil je niet wachten tot alle blogs online staan? Vraag dan direct onze whitepaper over deze serie aan.
Vooruitblik
In de volgende blogs nemen we je mee door alle stappen en overwegingen voor een succesvolle implementatie van GenAI in jouw organisatie. We voorzien je van de benodigde kennis en tools om in jouw organisatie een succesvol AI-project op te zetten. Dus blijf ons volgen en schrijf je in voor de volgende blogs via het formulier hieronder!
Blog 1
Introductie in Generatieve AI
In het intro-blog behandelen we het concept Generatieve AI: Wat is Generatieve AI? We geven een introductie in Generatieve AI: wat het is, hoe het werkt en welke kansen en uitdagingen er liggen bij het implementeren ervan in je organisatie.
Blog 2
Selecteer je use case
In het tweede blog gaan we in op het onderzoek naar en de selectie van een geschikte use case. Hierbij gaan we in op valkuilen bij het kiezen van use cases en het belang om een oplossing voor een probleem te zoeken en niet andersom.
Blog 3
Het fundament van je AI-project
In het derde blog gaan we in op het fundament van ieder succesvol AI-project: de informatievoorziening. Ook voor AI geldt; “garbage in, garbage out”. Het gaat hier niet alleen de AI-modellen die je gebruikt, maar juist ook de data en systemen die deze modellen voeden.
Blog 4
Selecteer, train en tune
je AI-model
In het vierde blog gaan we in op het trainen en tunen van je AI-model voor je use-case. Voor de meeste use-cases is meer nodig dan een “off-the-shelf” oplossing. Het trainen en/of tunen van je taalmodel voor jouw use-case maakt een groot verschil.
Blog 5
Verantwoord inzetten van AI
In het vijfde blog gaan we in op ethische en maatschappelijke overwegingen, zoals privacy en algoritme-bias. Technologie is op zich niet “goed” of “slecht”, maar een verkeerde implementatie kan onnodig risico’s met zich meebrengen. Wij betogen voor een verantwoorde en mensgerichte inzet van AI.
Blog 6
Valideer de haalbaarheid, wenselijkheid en levensvatbaarheid
In het zesde blog gaan we in op het innovatieve aspect van Generatieve AI-projecten en hoe je de relevantie en waarde van je use-case valideert. Onze Data Discovery Sprint geeft hier om een snelle, nauwkeurige, mensgerichte en snelle manier invulling aan.
Blog 7
Begeleid je organisatie in het werken met Generatieve AI
In het zevende blog gaan we in op hoe je mensen in je organisatie leert werken met AI. Een succesvolle implementatie vraagt ook om een gedegen implementatiestrategie met oog voor de technologie, werkprocessen en de mensen die ermee werken.
Blog 8
Recap: Geleerde lessen van de blogserie
In het laatste blog vatten we alle geleerde lessen samen en blikken we vooruit op het vervolg na deze blogserie.
Introductie
Welkom terug bij onze serie Generatieve AI (GenAI) projecten. In deze serie doorlopen we zes belangrijke aspecten bij het implementeren van Generatieve AI in jouw organisatie, zoals het selecteren van een sterke use case, het creëren van een solide technisch fundament, het werken met AI-modellen en het mensgericht toepassen van AI. In dit zesde blog richten we ons op een ander essentieel aspect: het valideren van de haalbaarheid, waarde en impact van AI-oplossingen.
Bewijzen of juist ontkrachten van aannames
Met “valideren” bedoelen we het bewijzen of juist ontkrachten van aannames die we hebben over de voorgenomen (Gen)AI-oplossing. Denk hierbij aan de wensen die gebruikers hebben, de wijze waarop technische elementen (samen)werken of de impact die de AI-oplossing heeft op de organisatie, de mens of zelfs de maatschappij. Deze aannames brengen we onder in de volgende categorieën:
- Haalbaarheid: Deze aannames gaan over technische en praktische mogelijkheden. Kunnen we de technologie daadwerkelijk ontwikkelen en toepassen binnen de gestelde randvoorwaarden?
- Wenselijkheid: Deze aannames gaan over de waarde van de oplossing in het oog van de gebruikers. In hoeverre los je een werkelijk probleem op en voldoet de oplossing aan hun behoeften en verwachtingen?
- Toekomstbestendigheid: Deze aannames gaan over de economische en operationele aspecten. Is de oplossing bijvoorbeeld economisch zinvol en duurzaam op lange termijn binnen de markt en het bedrijfsmodel?
The proof is in the pudding!
Hoeveel gebruikers of (potentiële) klanten je over hun intenties ook spreekt en hoeveel (technische) kennis je ook verzamelt over je voorgenomen AI-oplossing: in welke mate en op welke wijze je AI-oplossing werkt, ervaar je pas wanneer deze in het echt wordt gebruikt.
En hier wringt ook de schoen: Erkennen dat je te maken hebt met onzekerheden in je project voelt ongemakkelijk en gaat soms ook tegen de manier hoe binnen je organisatie naar projecten wordt gekeken. Tegelijkertijd kan het negeren ervan je in een latere fase duur komen te staan. Zeker in een vroeg stadium is het doel om zoveel mogelijk te leren over de wenselijkheid, haalbaarheid en toekomstbestendigheid en niet om in één keer de perfecte oplossing te introduceren. Ons advies is om zo snel mogelijk eindgebruikers te laten werken met je AI-oplossing, feedback te verzamelen en op basis daarvan steeds een nieuwere, betere versie te introduceren.
Valideren met de Data Discovery Sprint
Onze Data Discovery Sprint is een bewezen methodiek die helpt de onzekerheid in AI-projecten te omarmen en overbruggen. Het helpt de benodigde flexibiliteit te bereiken in je organisatie en legt de basis voor een solide AI-project.
Fase 1: Launch
In onze unieke ‘Data Discovery Sprint’, die we in ons tweede blog hebben geïntroduceerd, starten we met de ‘Launch’-fase. Hierin duiken we met volle vaart in het definiëren van de scope van een AI-project. We voeren snelle interviews, brainstormsessies en technisch onderzoek uit, en gebruiken een aangepast waardepropositiecanvas. Dit hulpmiddel, uniek voor JoinSeven, voegt aan het klantprofiel en de oplossing de essentiële technische randvoorwaarden toe, waardoor we een gedetailleerd en toch flexibel overzicht krijgen van de projectvereisten.
Fase 2: Validate
De ‘Validate’-fase staat in het teken van het valideren van aannames over haalbaarheid, wenselijkheid en toekomstbestendigheid. We benaderen dit proces actief en praktisch: in plaats van uitgebreid onderzoek verrichten we doelgerichte experimenten. Bij haalbaarheid toetsen we de technische en data-aspecten met een initiële ‘proof of concept’. Voor wenselijkheid ontwikkelen we prototypes en voeren ‘wizard of Oz’-tests uit om gebruikersinteracties te observeren. Tot slot evalueren we in de toekomstbestendigheid de marktacceptatie en economische levensvatbaarheid van de oplossing.
Fases 3 en 4: Awaken en Deliver
In ‘Awaken’ en ‘Deliver’, de vervolgfases, richten we ons op de fijnere details en de daadwerkelijke implementatie van de AI-oplossing. Hier passen we vergelijkbare experimentele benaderingen toe als in de ‘Validate’-fase, nu gericht op incrementele verbeteringen en optimalisaties. Deze methodische en evenwichtige aanpak stelt ons in staat om zowel de exploitatieve als exploratieve uitdagingen van AI-projecten aan te gaan.
Data Discovery Sprint
Lees meerStap 1
Launch
Stap 2
Validate
Stap 3
Awaken
Stap 4
Deliver
Experiment designs
Zoals we eerder benoemden, plotten we aannames hoofdzakelijk in drie categorieën: haalbaarheid, wenselijkheid en toekomstbestendigheid. Hieronder volgt een lijst van experiment designs voor elk van deze categorieën, met een korte uitleg over hoe ze kunnen worden toegepast in jouw (Gen)AI projecten:
Valideren van de haalbaarheid
- Proof of Concept (PoC): Test de technische haalbaarheid van de AI-oplossing door een basisversie te ontwikkelen die de kernfunctionaliteit demonstreert. In GenAI projecten kan dit betekenen dat een klein, werkend model wordt gecreëerd om te bewijzen dat het concept technisch uitvoerbaar is.
- Dataverificatietest: Beoordeel de beschikbaarheid, kwaliteit en toepasbaarheid van de data die nodig is voor de AI-oplossing. Dit kan inhouden dat je werkt met een subset van data om te bevestigen of de data geschikt is voor het beoogde gebruik.
- Technische haalbaarheidstest: Onderzoek of de bestaande infrastructuur en technologische middelen voldoende zijn om de AI-oplossing te ondersteunen. Dit kan een evaluatie van hardware, software en algoritmen omvatten.
Valideren van de wenselijkheid
- Gebruikerstesten: Ontwikkel prototypen of mock-ups van de oplossing en observeer hoe gebruikers ermee omgaan. Dit helpt om te begrijpen of de AI-oplossing aansluit bij de behoeften en verwachtingen van de gebruiker.
- Wizard of Oz test: Simuleer de AI-oplossing in een gecontroleerde omgeving zonder dat de gebruiker weet dat het nog niet volledig functioneel is. Dit helpt om inzicht te krijgen in hoe gebruikers omgaan met de uiteindelijke oplossing.
- A/B Testen: Bied verschillende versies van een functie of product aan een groep gebruikers aan om te bepalen welke versie beter presteert in termen van gebruikersengagement en -tevredenheid.
Valideren van de toekomstbestendigheid
- Marktanalyse: Onderzoek de marktvraag en concurrentie voor de AI-oplossing. Dit kan marktonderzoek omvatten om de potentiële acceptatie en prijsgevoeligheid te beoordelen.
- Business Model Testing: Evalueer verschillende bedrijfsmodellen en prijsstrategieën voor de AI-oplossing. Dit kan het testen van verschillende prijspunten of verdienmodellen omvatten om de levensvatbaarheid op lange termijn te beoordelen.
- Regulatory Compliance Test: Voer tijdens de ontwikkeling assessments uit, zoals een DPIA of IAMA.
Direct alle inzichten?
Wil je niet wachten tot alle blogs online staan? Vraag dan direct onze whitepaper over deze serie aan.
Conclusie
In dit blog hebben we je meegenomen in het valideren van aannames voor jouw AI-project. We namen je mee in hoe je onzekerheid in je AI-project omarmt en gaven met onze Data Discovery Sprint en effectieve experiment designs concrete handvatten om hiermee in jouw project aan de slag te gaan.
Een aantal hoofdpunten:
- Het erkennen van onzekerheid en het hebben van aannames is cruciaal voor een succesvol AI-project
- De “sweet spot of innovation” zit in het midden van de haalbaarheid, wenselijkheid en toekomstbestendigheid van je AI-oplossing
- De Data Discovery Sprint ondersteunt in het experimenteren en leren in jouw AI-project
- Iedere (type) aanname kan je valideren met verschillende experiment designs
Vooruitblik
In de volgende blogs nemen we je mee door alle stappen en overwegingen voor een succesvolle implementatie van GenAI in jouw organisatie. We voorzien je van de benodigde kennis en tools om in jouw organisatie een succesvol AI-project op te zetten. Dus blijf ons volgen en schrijf je in voor de volgende blogs via het formulier hieronder!
Blog 1
Introductie in Generatieve AI
In het intro-blog behandelen we het concept Generatieve AI: Wat is Generatieve AI? We geven een introductie in Generatieve AI: wat het is, hoe het werkt en welke kansen en uitdagingen er liggen bij het implementeren ervan in je organisatie.
Blog 2
Selecteer je use case
In het tweede blog gaan we in op het onderzoek naar en de selectie van een geschikte use case. Hierbij gaan we in op valkuilen bij het kiezen van use cases en het belang om een oplossing voor een probleem te zoeken en niet andersom.
Blog 3
Het fundament van je AI-project
In het derde blog gaan we in op het fundament van ieder succesvol AI-project: de informatievoorziening. Ook voor AI geldt; “garbage in, garbage out”. Het gaat hier niet alleen de AI-modellen die je gebruikt, maar juist ook de data en systemen die deze modellen voeden.
Blog 4
Selecteer, train en tune
je AI-model
In het vierde blog gaan we in op het trainen en tunen van je AI-model voor je use-case. Voor de meeste use-cases is meer nodig dan een “off-the-shelf” oplossing. Het trainen en/of tunen van je taalmodel voor jouw use-case maakt een groot verschil.
Blog 5
Verantwoord inzetten van AI
In het vijfde blog gaan we in op ethische en maatschappelijke overwegingen, zoals privacy en algoritme-bias. Technologie is op zich niet “goed” of “slecht”, maar een verkeerde implementatie kan onnodig risico’s met zich meebrengen. Wij betogen voor een verantwoorde en mensgerichte inzet van AI.
Blog 6
Valideer de haalbaarheid, wenselijkheid en levensvatbaarheid
In het zesde blog gaan we in op het innovatieve aspect van Generatieve AI-projecten en hoe je de relevantie en waarde van je use-case valideert. Onze Data Discovery Sprint geeft hier om een snelle, nauwkeurige, mensgerichte en snelle manier invulling aan.
Blog 7
Begeleid je organisatie in het werken met Generatieve AI
In het zevende blog gaan we in op hoe je mensen in je organisatie leert werken met AI. Een succesvolle implementatie vraagt ook om een gedegen implementatiestrategie met oog voor de technologie, werkprocessen en de mensen die ermee werken.
Blog 8
Recap: Geleerde lessen van de blogserie
In het laatste blog vatten we alle geleerde lessen samen en blikken we vooruit op het vervolg na deze blogserie.
We zijn geselecteerd voor het “Microsoft for Startups” programma
Met trots kondigen we aan dat we zijn geselecteerd om deel te nemen aan het “Microsoft for Startups” programma. Dit is voor ons een belangrijke mijlpaal in onze reis om organisaties te helpen hun impact in hun markt te vergroten door de ontwikkeling van intelligente apps, dashboards en andere datagedreven toepassingen.
Een schat aan mogelijkheden
Deelname aan het “Microsoft for Startups” programma biedt ons een schat aan mogelijkheden:
- Verbeterde Productprestaties: Dankzij dit programma kunnen we onze producten, Codi en Elyn, voorzien van nog betere prestaties. Dit omvat geavanceerde analyses, algoritmes en de integratie van kunstmatige intelligentie, waardoor we onze klanten nog beter kunnen bedienen.
- State-of-the-art datadiensten: Ons Dataplatform Heptagon profiteert ook enorm van deze samenwerking. Met toegang tot de nieuwste technologieën van Microsoft kunnen we onze datadiensten naar een hoger niveau tillen, waardoor alle klanten die van ons platform gebruik maken, profiteren van geavanceerdere en efficiëntere oplossingen.
- Innovatie met de nieuwste technologieën: Deelname aan het programma stelt ons ook in staat om te innoveren met de nieuwste technologieën. In innovatieprojecten met onze Data Discovery Sprint hebben we nu een nog uitgebreidere collectie van mogelijkheden, waardoor we een breder scala aan oplossingen kunnen bieden aan onze klanten.
Bij JoinSeven hebben we altijd geloofd in de kracht van samenwerking en innovatie. Deze samenwerking met Microsoft versterkt onze positie als een toonaangevend bureau voor innovatie met data en kunstmatige intelligentie en stelt ons in staat om voorop te blijven lopen.
Introductie
Een nieuw jasje
Vandaag introduceren we met trots JoinSeven in een nieuw jasje: een gloednieuwe branding, met een frisse website, een kenmerkend logo en prikkelende kleuren. Een stijl die weerspiegelt wie we zijn en waar we naar streven.
We doen dat niet zomaar:
- Zelfrealisatie: We zijn er in de afgelopen jaren steeds beter achtergekomen wie we zijn, wat ons drijft en wat onze plek is in de markt.
- Innoveren: We willen vooroplopen als het gaat om innovatie met data en kunstmatige intelligentie. De nieuwe website is ontworpen om precies dat te reflecteren: een vooruitstrevende en mensgerichte benadering die centraal staat in alles wat we doen.
- Onze unieke assets: Onze beproefde methodiek Data Discovery Sprint, Dataplatform Heptagon en onze SaaS-oplossingen Codi en Elyn spelen in onze dienstverlening een cruciale rol.
- We zetten onze expertise breder in: We hebben een track-record opgebouwd op innovatieprojecten met data, kunstmatige intelligentie en business intelligence. We zijn een full-service innovatiebureau dat de gehele keten van data-engineering, business intelligence, kunstmatige intelligentie tot softwareontwikkeling beslaat.
- Aantrekken van talent: De nieuwe generatie dataspecialisten is hongerig, gedreven en op zoek naar een plek waar hun talenten kunnen floreren. We hebben ons gerealiseerd dat we de ideale omgeving willen creëren waar werkgeluk centraal staat. We willen talent niet alleen aantrekken, maar ook koesteren en ontwikkelen.
Waar we voor staan
Onze missie & visie
Onze missie is om de maatschappelijke impact van organisaties te vergroten door intelligente apps, dashboards en datagedreven oplossingen te ontwikkelen en implementeren. We zijn ervan overtuigd dat geen uitdaging te groot is. Met onze experts, state-of-the-art technologie en onze werkwijze, vertalen we iedere uitdaging naar een datagedreven oplossing op maat.
We stellen onze kernwaarden centraal in alles wat we doen:
- Snelheid: We zijn wendbaar, efficiënt en vooruitstrevend.
- Nauwkeurigheid: We waarborgen precisie in elke data-interactie.
- Co-creatie: Samenwerken zit in ons DNA.
- Creativiteit: We denken buiten de kaders om innovatieve oplossingen te vinden voor complexe uitdagingen.
Wat ons uniek maakt
Onze Data Discovery Sprint methodiek, en onze SaaS-oplossingen zoals Heptagon, Codi en Elyn vormen de basis van onze diensten op het gebied van Business Intelligence, Kunstmatige Intelligentie en SaaS. Ze weerspiegelen ons streven naar impact en de waarde die we bieden aan een breed scala van organisaties.
Het draait om jou
Werkgeluk
Onze bedrijfscultuur draait om werkgeluk. Bij ons staat de mens centraal. We bieden een stimulerende omgeving die persoonlijke groei ondersteunt en ruimte biedt voor creativiteit en initiatief. We willen opkomend talent de kans en ruimte bieden om zich te ontwikkelen binnen ons vakgebied in een dynamische en open omgeving.
“Bij ons draait het om jou! Dus, wanneer kom jij bij onze community?”
Een unieke kans
Tijdelijke actie
Als onderdeel van deze lancering introduceren we een unieke kans: we bieden je de mogelijkheid om je in te schrijven voor een gratis “Launch” traject binnen onze Data Discovery Sprint!
Wat houdt dit in? Je doorloopt met ons samen de eerste stap binnen de Data Discovery Sprint. We voeren op basis van een uitdaging binnen je organisatie gebruikersonderzoek uit en faciliteren een brainstorm waarin we op zoek gaan naar oplossingen voor je uitdaging. Op basis van alle inzichten bieden we een concreet voorstel voor een innovatieve oplossing aan.
Daarna heb je de volledige vrijheid in of en hoe je ermee verder gaat: Deelname aan dit traject is geheel vrijblijvend.
Deelnemen aan deze actie?
Laat een bericht achter!
We verloten op 1 november één gratis Data Discovery Sprint – Launch traject onder alle inschrijvingen.
Meld je aanOverheidsbrede pilot
De pilot Kamervragen
Met Ministeries van EZK, VWS en Financiën, Belastingdienst, RVO en Douane starten we op 7 en 14 maart de pilot Kamervragen. We onderzoeken hoe we ambtenaren kunnen ondersteunen bij het beantwoorden van Kamervragen door de inzet van Codi, de kunstmatige intelligentie speciaal ontwikkeld voor de overheid en politiek.
Het probleem
Ambtenaren ervaren verschillende knelpunten
Kamervragen zijn een belangrijk middel bij het nemen van politieke beslissingen en het uitoefenen van toezicht op onze regering. Jaarlijks worden meer dan 3.000 Kamervragen gesteld. Duizenden ambtenaren verspreid over honderden beleidsterreinen en directies houden zich binnen de overheid bezig met het beantwoorden van Kamervragen.
Het beantwoorden van Kamervragen blijkt een complexe opgave voor ambtenaren. Onder een vaak zeer hoge tijdsdruk moeten ze objectieve, feitelijke antwoorden geven die in lijn zijn met de meest recente inzichten, onderzoeken, standpunten en eerder gegeven antwoorden. Dat is niet alleen tijdrovend, maar ook moeilijk. Regelmatig lukt het dan ook niet om Kamervragen op tijd te beantwoorden. En blijven andere belangrijke werkzaamheden liggen.
Zoeken naar een speld in een hooiberg
Ambtenaren speuren dagelijks het internet af naar de laatste politieke inzichten. Ze sprokkelen de informatie bij elkaar in een berg van (lees: duizenden) openbare publicaties op verschillende websites, waaronder tweedekamer.nl, officiëlebekendmakingen.nl, wetten.nl, rijksoverheid.nl en nog veel meer. Daar zoeken ze in (vaak lange) tekstbestanden naar antwoorden op hun vragen zoals:
- “Wat is de meest actuele informatie over deze Kamervraag?”
- “Deze Kamervraag is eerder gesteld: Wat hebben we hier eerder op geantwoord?”
- “Welke toezeggingen zijn hierover door de Minister gedaan?”
- “In welk rapport of kamerbrief vind ik deze informatie ook alweer?”
- “Wat was het standpunt ook alweer? En wanneer vond het debat plaats?”
- En ga zo maar door..
Dat kan en moet beter
En dat staat centraal in de pilot Kamervragen. Met Codi maken we een einde aan het urenlange doorspitten van lange publicaties en politieke documenten. Daarvoor wordt Codi al langer door verschillende directies gebruikt. Na de lancering van het platform in 2021 na het winnen van de challenge ‘Kamervragen’ in het Startup in Residence InterGov, werden we voor onze oplossing in 2022 ook nog genomineerd voor de KVK top 100!
We spraken daarna met allerlei directies van verschillende Ministeries. En uit die gesprekken bleek dat de behoefte naar een oplossing specifiek voor het beantwoorden van Kamervragen groot is. Een oplossing waarmee ambtenaren worden ondersteund in het vergelijken, analyseren en vinden van de juiste informatie. daar gaat steeds zoveel tijd in zitten voor ambtenaren. En daar hebben wij een oplossing voor.
De Kamervragen module
Centraal in deze pilot staat de nieuwste functionaliteit in Codi. Deze functionaliteit is specifiek gericht op Kamervragen. Nog voordat ambtenaren starten met het zoeken naar de juiste informatie, heeft Codi zijn analyse al klaar staan. En ontvangt de ambtenaar deze in zijn of haar mailbox. De ambtenaar heeft per Kamervraag direct inzicht in vergelijkbare vragen, eerder gegeven antwoorden, de laatste toezeggingen, standpunten en andere relevante inzichten en onderzoeksresultaten over het betreffende onderwerp.
Zo werkt het
Codi analyseert dagelijks miljoenen documenten en presenteert ambtenaren direct alle informatie die ze nodig hebben om Kamervragen te beantwoorden. Codi vergelijkt iedere nieuw binnengekomen vraag met eerder gestelde Kamervragen en antwoorden, inzichten uit rapporten, debatten en andere overheidsinformatie over de betreffende Kamervraag. Daarnaast houdt Codi dagelijks in de gaten welke nieuwe ontwikkelingen er zijn. Oftewel: Codi neemt het speurwerk voor je uit handen en bespaart ambtenaren veel tijd en moeite.
Daarvoor zetten wij kunstmatige intelligentie in dat valt in de categorie “Natural Language Processing. Wat dat is en hoe we dat toepassen in ons platform, beschrijft Gaetana onder meer in haar blogs over Natural Language Processing en het “Similarity” probleem.
Brede politieke interesse
Aan de pilot doen onder meer teams mee die actief zijn op het gebied van Covid-19, de Digitale Economie, Handhaving en Curatieve Zorg. Zoals je leest, erg verschillend. En al deze disciplines en onderwerpen werken straks (letterlijk) samen aan het definiëren, testen en valideren van onze oplossing. Het voordeel hiervan is dat resultaten van deze pilot breed toe te passen zijn.
Dus of jouw team zich nu bezighoudt met de circulaire economie, stikstof, armoedebestrijding of een ander actueel politiek onderwerp: Meedoen aan deze pilot is mogelijk. Codi maakt ook jouw leven als ambtenaar een stuk makkelijker en zorgt ervoor dat Kamervragen binnen jouw team snel, nauwkeurig en consistent beantwoord kunnen worden!
Meedoen?
Op 7 en 14 maart trappen we de pilot met verschillende deelnemers af. En er is nog ruimte voor nieuwe deelnemers. Ben je nieuwsgierig hoe Codi jou kan ondersteunen bij het beantwoorden van Kamervragen, neem dan contact op! Wil je op de hoogte gehouden worden van de pilot, schrijf je dan in voor de speciale nieuwsbrief over de pilot.
Trots
JoinSeven in de KVK top 100 van 2022!
Bij JoinSeven hebben we altijd gestreefd naar innovatie en vooruitgang. Het is dan ook met grote trots dat we aankondigen dat we met JoinSeven een felbegeerde plek hebben veroverd in een belangrijke competitie: JoinSeven in de KVK top 100 van 2022! Deze erkenning plaatst ons stevig tussen de meest vernieuwende MKB-bedrijven in Nederland.
De “KVK Innovatie Top 100” is niet zomaar een lijstje. Het is in de loop der jaren uitgegroeid tot de grootste en belangrijkste innovatieprijs voor het MKB. Deze prestigieuze prijs, toegekend door de Kamer van Koophandel, schijnt licht op de bedrijven die écht het verschil maken met hun unieke innovaties.
Wat maakte onze inschrijving uniek?
Codi, de virtuele beleidsassistent
Codi is onze kunstmatige intelligentie voor de overheid. Eerder won Codi al de challenge ‘Kamervragen doorzoeken’ binnen het Startup in Residence programma. Dit was een samenwerking met het Ministerie van Economische Zaken en Klimaat, waar we gezamenlijk naar een innovatieve oplossingen zochten voor het sneller, nauwkeuriger en consistenter beantwoorden van Kamervragen.
We zijn ontzettend trots met JoinSeven in de KVK top 100 van 2022!
De spanning steeg
46e in KVK Innovatie Top 100 lijst van 2022
Terwijl de spanning steeg, keken we vol verwachting uit naar de uitreiking in de Prodentfabriek in Amersfoort op 30 november 2022. Ondanks we niet als nummer één uit de bus kwamen maar als 46e, deze nominatie is al een overwinning op zich. Het onderstreept onze toewijding aan innovatie, onze drive om altijd het beste te leveren en onze vastberadenheid om grenzen te verleggen.
Een ding is zeker: bij JoinSeven stoppen we nooit met innoveren. En met Codi aan onze zijde zijn de mogelijkheden eindeloos. Op naar meer successen! Op deze notering van JoinSeven in de KVK top 100 van 2022 zijn we in elk geval supertrots!
Welkom bij JoinSeven, Gaetana!
Op 1 september startte Gaetana Ruggiero als Data Scientist bij JoinSeven. Voor ons betekende het de eerste medewerker bij ons in dienst. We besloten Gaetana te onderwerpen aan een heus interview. Wie Gaetana is, wat haar drijft en wat ze gaat doen, lees je in dit blog.
Vraag 1
Wie ben je?
Ik ben Gaetana Ruggiero, 28 jaar oud, woon in Amsterdam en ben opgegroeid in een klein dorp in de buurt van Napels, Italië. Ik ben een Data Scientist en Machine Learning Engineer met een passie voor taal. Na mijn bacheloropleiding formele taalkunde aan de Universiteit van Napels volgde ik een dubbele masteropleiding in Malta en Nederland op het vlak van data science en natural language processing (NLP).
Na mijn studies heb ik een tijdje gewerkt als onderzoeksassistent op de Universiteit van Turijn, maar ik wilde erg graag weer terug naar Amsterdam om hier te wonen en werken!
In mijn vrije tijd ben ik gepassioneerd bachata-danser. Naast dat ik het zelf graag doe, geef ik in mijn oude studentenstad Groningen elke woensdagavond les. En naast Italiaans spreek ik ook Engels, Spaans en Nederlands.
“Dit wil ik meemaken!”
Vraag 2
Waarom koos je voor JoinSeven?
In mijn zoektocht naar een baan als Data Scientist kwam ik er al snel achter dat het een ontzettend breed vakgebied is. En dat het niet vanzelfsprekend is dat je als Data Scientist met tekst- en taalverwerking (NLP) aan de slag gaat. Het is een niche binnen het vakgebied. JoinSeven richt zich juist specifiek hierop en dat spreekt mij qua rol erg aan!
Daarnaast zocht ik een dynamische rol bij een jonge startup. In de eerste gesprekken bleek al dat hier ontzettend veel ideeën liggen en ook ruimte om daar iets mee te doen. Na onze kennismaking dacht ik gelijk “dit wil ik meemaken”!
Tot slot gaat JoinSeven verder dan het onderzoekende en experimenterende aspect wat ik gewend ben vanuit de universiteit. JoinSeven maakt producten met echte eindgebruikers. Dat betekent ook dat ik als Data Scientist verder moet kijken dan enkel de data, het model, de code en de uitkomst ervan: de vertaling naar het eindproduct, de marketing en de dienstverlening naar gebruikers. Mensen echt blij zien worden van het product en het in de dagelijkse praktijk zien gebruiken. Daar krijg ik veel energie van.
Vraag 3
Wat ga je bij JoinSeven doen?
Mijn primaire werkzaamheden zijn tweeledig: allereerst ga ik aan de slag als Data Scientist en Machine Learning Engineer binnen lopende projecten. Er starten binnenkort verschillende pilots en trajecten met Codi. Daarnaast draai ik mee in het nieuwe Startup in Residence programma, waarbij we “Innovatieve vraagstukken” uit formele beleidsteksten proberen te destilleren. En als derde project gaan we binnenkort bij een adviesbureau uit het grote MKB aan de slag om commerciële waarde uit openbare tekstdata te halen. Super afwisselend en interessant!
Als tweede (en soms in combinatie met mijn rol in projecten) ontwikkel ik allerlei modellen en experimenten op het Dataplatform Heptagon. Voorbeelden zijn de detectie van vergelijkbare documenten, automatische samenvattingen van teksten, vraag-en-antwoord modellen en nog meer.
En daarnaast ook vooral inwerken! Björn, Bart en Niels zijn met veel dingen bezig. Daar wil ik alles van weten! Ik voelde me hier vanaf dag één trouwens welkom: Ze hadden taart geregeld, bloemen en op het whiteboard op kantoor stond ontzettend groot “WELKOM GAETANA!”, daar werd ik wel heel blij van.
Vraag 4
Wat is NLP?
NLP staat voor Natural Language Processing. Het is een deelgebied van computerwetenschap dat zich tussen taalkunde, informatica en kunstmatige intelligentie bevindt. Bij NLP houd je je bezig met de interacties tussen computers en menselijke taal. Het bevat allerlei technieken die ontworpen zijn om menselijke taal (bijvoorbeeld tekst of spraak) te begrijpen en te analyseren. Door deze technieken zijn allerlei nieuwe innovaties mogelijk!
Ik zit nog midden in mijn verkenning op de toepassing op de data in ons dataplatform, maar denk bijvoorbeeld aan het volgende:
- Het automatisch categoriseren of classificeren van tekst
- Het achterhalen van emoties of ‘sentiment’ in tekst
- Het automatisch genereren van samenvattingen van tekstdocumenten
- Het vergelijken van teksten, bijvoorbeeld ten behoeve van het beantwoorden van vragen
- Het automatisch genereren van tekst
- En zo kan ik nog wel even doorgaan. Er is zoveel mogelijk en ik kan niet wachten om ermee aan de slag te gaan!
Vraag 5
Wil je daar af en toe
iets over schrijven?
Ja, dat is leuk! Ik schrijf er binnenkort graag een uitgebreidere blog(reeks) over!