Wat is Generatieve AI?

Wat is Generatieve AI? | Blogserie GenAI

Ontdek de blogserie over Generatieve AI! In dit eerste blog van de 8, start de reis naar het benutten van GenAI in jouw organisatie.

Introductie

Blogserie Generatieve AI

In dit blog geven we een introductie in Generatieve AI. Het is vrijwel niemand ontgaan: de snelle ontwikkelingen rondom Generatieve AI (GenAI). Generatieve AI is enorm in populariteit gestegen, met name dankzij doorbraken zoals ChatGPT en DALL-E van OpenAI. Naar schatting werken momenteel al meer dan anderhalf miljoen Nederlanders met de technologie (1), bijvoorbeeld om mails op te stellen, afbeeldingen te genereren of zelf te experimenteren met nieuwe toepassingen.

De technologie biedt kansen om werk beter en efficiënter uit te voeren. Volgens recent onderzoek door PWC is ruim 44% van de Nederlandse banen in hoge mate “blootgesteld” aan GenAI en kan de technologie een oplossing zijn voor de aanhoudende arbeidsmarktkrapte in Nederland (2). In het onderwijs is momenteel ook een enorme verschuiving gaande, nu studenten zichzelf massaal laten ondersteunen door ChatGPT bij het maken van opdrachten en schrijven van essays en scripties. Universiteiten gaan op zoek naar manieren om de technologie op een constructieve manier onderdeel te laten maken van het onderwijs (3).

Wij merken ook een groeiende interesse in GenAI. Van de boardroom tot de koffiecorner, in zo’n beetje ieder bedrijf wordt momenteel wel gesproken over de toepassingen. En iedere dag is wel érgens een kennisbijeenkomst of een webinar over het onderwerp.

Generatieve AI is nog niet voor iedereen een succesverhaal

Zoals met al het nieuws, lees je vooral de enorme succesverhalen (of juist risico’s en doemverhalen). In de praktijk zijn veel organisaties in Nederland nog weinig veranderd en blijft een structurele inbedding van de waarde van GenAI regelmatig nog achter. De vraag die mensen en organisaties ons vaak stellen is:

  • “Wat is Generatieve AI?”
  • “Wat kan AI voor mijn organisatie betekenen?”
  • “Hoe start ik een succesvol AI-project?”
  • “Wat is ervoor nodig om AI te kunnen implementeren?”
  • “En hoe doe ik dat op een verantwoorde manier?”

Allemaal zijn dit terechte vragen. En het antwoord hierop is niet altijd even gemakkelijk te vinden.

Blogserie

Daarom lanceren we deze blogserie over Generatieve AI. Door onze kennis te delen, willen we organisaties helpen de stap te zetten van “het praten en overwegen” naar het realiseren van succesvolle en verantwoorde AI. Tot het einde van dit jaar belichten we iedere week één onderwerp voor een succesvolle AI-implementatie. We gaan in op onderwerpen als het vinden van een geschikte use case, het realiseren van een gedegen technisch fundament, het selecteren, trainen en tunen van taalmodellen, het verantwoord inzetten van AI tot het valideren en implementeren van je AI-oplossing. We focussen hierin met name op AI-oplossingen gericht op tekstuele content.

In deze eerste blog behandelen we de vraag “Wat is Generatieve AI?”. En geven we een een introductie in Generatieve AI: We gaan in op wat het is, hoe het werkt en welke kansen en uitdagingen er liggen bij het implementeren ervan in je organisatie. We geven ook een voorproefje van de volgende blogs in deze serie.

Generatieve AI zet de wereld
op zijn kop

Laten we starten bij het concept Generatieve AI. Dit is meer dan een modieus buzzword. Het is een vorm van kunstmatige intelligentie waarbij algoritmen data genereren in plaats van alleen te analyseren. GenAI maakt het mogelijk om nieuwe content te creëren, variërend van tekst tot afbeeldingen, video’s, spraak en zelfs muziek. Het kan hiermee realistische en persoonlijke interacties tussen mens en machine bewerkstelligen.

Een aantal concrete voorbeelden waar Generatieve AI voor wordt ingezet:

  • Het beantwoorden van eerstelijns klantvragen over de dienstverlening van organisaties.
  • Het schrijven van promotie- en marketingmateriaal door marketeers en contentschrijvers.
  • Het genereren van afbeeldingen op basis van tekstuele beschrijvingen (of andersom).
  • Het schrijven, controleren en verbeteren van programmeercode of queries door ontwikkelaars.

Neem bijvoorbeeld een Generatieve AI in de context van een dienstverlener zoals wij. Op basis van data over veelgestelde vragen en reviews van klanten, kan een AI op een nieuwe vraag van een klant, gepersonaliseerde en relevante antwoorden genereren. Bij een nieuwe vraag, zoals over onze openingstijden of de wijze waarop een afspraak ingepland kan worden, interpreteert de AI eerst de opdracht/vraag, haalt de benodigde informatie op uit onze (interne en publieke) data en formuleert vervolgens een uniek en gepersonaliseerd antwoord aan de klant.

Dit is een vrij eenvoudig voorbeeld. Maar soortgelijke interacties kan je ook toepassen in andere, meer complexe bedrijfsmatige situaties. In de beleidsmatige context kan je denken aan een toepassing voor het beantwoorden van Kamervragen, voor het beantwoorden van Nota’s van Inlichtingen bij het uitvoeren van Europese aanbestedingen of voor het herkennen van commerciële kansen voor ondernemingen op basis van marktinformatie. Wil je meer weten over deze toepassingen, kijk dan vooral in ons portfolio van AI-projecten.

Wat is Generatieve AI?

Het taalmodel

De motor achter Generatieve AI

Generatieve AI-modellen leren van grote hoeveelheden data. Ze analyseren deze data om patronen en relaties te herkennen. De motor hierachter is een taalmodel (ook wel “Large Language Model” of “LMM” genoemd. Beschouw een taalmodel als een algoritme dat de structuur en het gebruik van taal leert te begrijpen. Taalmodellen zijn gebaseerd op statistische analyses van teksten. Ze berekenen de waarschijnlijkheid van woordvolgordes in zinnen.

Moderne taalmodellen, zoals die gebaseerd op Transformer-architecturen (bijvoorbeeld Open AI’s GPT-3 en 4, Google Bard en LLaMa van Meta), gebruiken neurale netwerken met verschillende lagen om relaties tussen woorden en zinsdelen in een tekst te leren begrijpen. Teksten worden eerst opgedeeld in stukjes (“tokens”), die kunnen variëren van één karakter tot hele woorden. Deze tokens worden weer omgezet in numerieke vectoren (“embeddings”) die de betekenis en relaties tussen woorden vastleggen.

Als eerst wordt het model getraind op een algemene dataset en daarna kan het voor specifieke taken worden getuned op een specifieke dataset voor de betreffende use case, zoals het beantwoorden van vragen van klanten of het genereren van teksten, afbeeldingen of muziek in een bepaalde context of genre.

Wat is Generatieve AI?

Hoeveel kennis heeft een AI?

Een veelgehoord misverstand

Een veelgehoord misverstand is dat mensen denken dat een kunstmatige intelligentie zoals ChatGPT over brede kennis beschikt en daardoor goede antwoorden op vragen kan formuleren. Dat ligt iets anders. In werkelijkheid voorspelt het taalmodel de waarschijnlijkheid van woordvolgordes op basis van de data waarop het is getraind. Het is daarbij goed om te beseffen dat de data waarop het model is getraind in het (nabije) verleden ligt.

“Ook voor AI geldt;
garbage in, garbage out. “

Björn Bogers, Co-Founder

Succesfactoren

Door onze ervaring in het veld van AI en innovatieve dataprojecten, hebben we een duidelijk beeld opgedaan van wat er nodig is om Generatieve AI succesvol én verantwoord te implementeren. Een deel van deze aspecten zijn specifiek van belang voor projecten op het vlak van GenAI, maar een groot deel is ook breed toepasbaar op projecten met een groot technologisch en innovatief karakter.

Denk bij het implementeren van Generatieve AI in jouw organisatie aan het volgende: 

  • Je hebt een duidelijke use-case nodig. Hierbij is ons advies: Zoek een oplossing voor een probleem en niet andersom! Inventariseer eerst problemen die je wil oplossen, en creëer daarna een visie van hoe (Generatieve) AI dit probleem kan oplossen.
  • Een succesvolle inzet van AI vraagt om een solide informatievoorziening. Ook voor AI geldt; “garbage in, garbage out”. Het gaat hier niet alleen om de taalmodellen die je gebruikt, maar juist ook de data en systemen die deze modellen voeden.
  • Train en tune je AI-model voor je use-case. Voor de meeste use-cases is meer nodig dan een “off-the-shelf” oplossing. Het trainen en/of tunen van je taalmodel voor jouw use-case maakt een groot verschil.
  • Houd rekening met met ethische en maatschappelijke overwegingen, zoals privacy en algoritme-bias. Technologie is op zich niet “goed” of “slecht”, maar een verkeerde implementatie kan onnodig risico’s met zich meebrengen. Wij staan voor een verantwoorde en mensgerichte inzet van AI.
  • Kies voor een innovatiegerichte, mensgerichte en kortcyclische aanpak. Een Generatieve AI project is namelijk per definitie innovatief. Valideer aannames en onderzoek onbekende facetten van AI in jouw organisatie. Onze Data Discovery Sprint geeft hier op een concrete, gebruikersgerichte en snelle manier invulling aan.
  • Begeleid mensen in je organisatie met het werken met AI. Generatieve AI zet bedrijfsprocessen op zijn kop en veel mensen vinden het spannend. Een succesvolle implementatie vraagt daarom om een gedegen implementatiestrategie met oog voor de mensen die ermee (gaan) werken, de technologie en werkprocessen. Alleen op deze manier zorg je ervoor dat een AI-project echt positieve impact heeft.

Conclusie

In dit blog gaven we een korte introductie op onze blogreeks over GenAI. We gingen in op de vraag: “Wat is Generatieve AI?”. We gaven een introductie in Generatieve AI, waar je het op kan toepassen en hoe het op hoofdlijnen werkt. We presenteerden tot slot vanuit onze visie de zes succesfactoren voor ieder AI-project. Deze factoren behandelen we allemaal in een apart blog in deze serie.

Een aantal hoofdpunten:

  • GenAI zet de wereld op zijn kop en is meer dan een modieus “buzzword”.
  • Het werkt op basis van een taalmodel dat op basis van Deep Learning woordvolgordes voorspelt.
  • Taalmodellen bevatten niet alle “kennis” zelf, maar baseert deze op de data waarop het is getraind.
  • Succesfactoren zoals een geschikte use-case, technologisch fundament en innovatieve werkwijzen zijn cruciaal voor een impactvolle AI-implementatie.
Wat is Generatieve AI? JoinSeven Office

Direct alle inzichten?

Wil je niet wachten tot alle blogs online staan? Vraag dan direct onze whitepaper over deze serie aan.

    Vooruitblik

    In de volgende blogs nemen we je mee door alle stappen en overwegingen voor een succesvolle implementatie van GenAI in jouw organisatie. We voorzien je van de benodigde kennis en tools om in jouw organisatie een succesvol AI-project op te zetten. Dus blijf ons volgen en schrijf je in voor de volgende blogs via het formulier hieronder!

    Wat is Generatieve AI?

    Blog 1

    Introductie in Generatieve AI

    In het intro-blog behandelen we het concept Generatieve AI: Wat is Generatieve AI? We geven een introductie in Generatieve AI: wat het is, hoe het werkt en welke kansen en uitdagingen er liggen bij het implementeren ervan in je organisatie.

    AI Use Case

    Blog 2

    Selecteer je use case

    In het tweede blog gaan we in op het onderzoek naar en de selectie van een geschikte use case. Hierbij gaan we in op valkuilen bij het kiezen van use cases en het belang om een oplossing voor een probleem te zoeken en niet andersom.

    Fundament AI

    Blog 3

    Het fundament van je AI-project

    In het derde blog gaan we in op het fundament van ieder succesvol AI-project: de informatievoorziening. Ook voor AI geldt; “garbage in, garbage out”. Het gaat hier niet alleen de AI-modellen die je gebruikt, maar juist ook de data en systemen die deze modellen voeden.

    Taalmodellen

    Blog 4

    Selecteer, train en tune
    je AI-model

    In het vierde blog gaan we in op het trainen en tunen van je AI-model voor je use-case. Voor de meeste use-cases is meer nodig dan een “off-the-shelf” oplossing. Het trainen en/of tunen van je taalmodel voor jouw use-case maakt een groot verschil.

    Mensgerichte AI

    Blog 5

    Verantwoord inzetten van AI

    In het vijfde blog gaan we in op ethische en maatschappelijke overwegingen, zoals privacy en algoritme-bias. Technologie is op zich niet “goed” of “slecht”, maar een verkeerde implementatie kan onnodig risico’s met zich meebrengen. Wij betogen voor een verantwoorde en mensgerichte inzet van AI.

    Validatie op AI

    Blog 6

    Valideer de haalbaarheid, wenselijkheid en levensvatbaarheid

    In het zesde blog gaan we in op het innovatieve aspect van Generatieve AI-projecten en hoe je de relevantie en waarde van je use-case valideert. Onze Data Discovery Sprint geeft hier om een snelle, nauwkeurige, mensgerichte en snelle manier invulling aan.

    Blog 7

    Begeleid je organisatie in het werken met Generatieve AI

    In het zevende blog gaan we in op hoe je mensen in je organisatie leert werken met AI. Een succesvolle implementatie vraagt ook om een gedegen implementatiestrategie met oog voor de technologie, werkprocessen en de mensen die ermee werken.

    Samenvatting blogserie

    Blog 8

    Recap: Geleerde lessen van de blogserie

    In het laatste blog vatten we alle geleerde lessen samen en blikken we vooruit op het vervolg na deze blogserie.

    Wat is Generatieve AI? AI Use Case Fundament AI Taalmodellen Mensgerichte AI Validatie op AI Samenvatting blogserie

    Meer weten?

    Wil je meer informatie over het implementeren van Generatieve AI naar aanleiding van dit blog? Niels gaat er graag met je over in gesprek.

    Wat is Generatieve AI? Co-Founder Niels van Bruggen